Equivalence classes and representatives of Golay sequences

نویسنده

  • Dragomir Z. Dokovic
چکیده

We introduce the notion of canonical form for Golay sequences such that every equivalence class contains exactly one member having the canonical form. Golay and Turyn have shown how to multiply Golay sequences of length m with Golay sequences of length n in order to construct Golay sequences of length mn. We say that Golay sequences of length n are constructible if they can be manufactured from Golay sequences of length 1 is odd or divisible by a prime = 3 (mod 4). If (A; B) and (C;D) are two pairs of Golay sequences of lengths m and n, respectively , then there is a method of multiplying them to obtain a pair (E;F) of Golay

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charm bracelets and their application to the construction of periodic Golay pairs

A k-ary charm bracelet is an equivalence class of length n strings with the action on the indices by the additive group of the ring of integers modulo n extended by the group of units. By applying an O(n3) amortized time algorithm to generate charm bracelet representatives with a specified content, we construct 29 new periodic Golay pairs of length 68.

متن کامل

Dyck Paths with Peaks Avoiding or Restricted to a Given Set

In this paper we focus on Dyck paths with peaks avoiding or restricted to an arbitrary set of heights. The generating functions of such types of Dyck paths can be represented by continued fractions. We also discuss a special case that requires all peak heights to either lie on or avoid a congruence class (or classes) modulo k. The case when k = 2 is especially interesting. The two sequences for...

متن کامل

The graph of equivalence classes and Isoclinism of groups

‎Let $G$ be a non-abelian group and let $Gamma(G)$ be the non-commuting graph of $G$‎. ‎In this paper we define an equivalence relation $sim$ on the set of $V(Gamma(G))=Gsetminus Z(G)$ by taking $xsim y$ if and only if $N(x)=N(y)$‎, ‎where $ N(x)={uin G | x textrm{ and } u textrm{ are adjacent in }Gamma(G)}$ is the open neighborhood of $x$ in $Gamma(G)$‎. ‎We introduce a new graph determined ...

متن کامل

Dihedral Golay sequences

Dihedral Golay sequences are introduced and found for lengths 7,9,15, and 19. Applications include new classes of signed group Hadamard matrices and 19 real Hadamard matrices of orders 2p, p S 4169.

متن کامل

Complex Golay sequences: structure and applications

Complex Golay sequences were introduced in 1992 to generalize constructions for Hadamard matrices using Golay sequences. (In the last section of this paper we describe some independent earlier work on quadriphase pairs–equivalent objects used in the setting of signal processing.) Since then we have constructed some new in7nite classes of these sequences and learned some facts about their struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 189  شماره 

صفحات  -

تاریخ انتشار 1998